Structural Calculations

Address removed to protect client confidentiality
August 2015

The span quoted is solely for the purpose of producing these structural calculations. Measurements must be taken on site before ordering any materials.

Abstract

Beams specified for load bearing walls of cavity construction, are often two beams, one for each skin of brick/blockwork. Check the comments at the bottom of the page for each beam specified, before ordering any materials.

Loading Data

9"BRICKWORK:

215mm Brickwork	$=4.80 \mathrm{kN} / \mathrm{m} 2$
Plaster	$=0.60 \mathrm{kN} / \mathrm{m} 2$
Total Load	$=5.40 \mathrm{kN} / \mathrm{m} 2$

BRICKWORK PARTITION:
100mm Brickwork
$=2.10 \mathrm{kN} / \mathrm{m} 2$
2 No. Plaster Faces $\quad=0.60 \mathrm{kN} / \mathrm{m} 2$
Total Load $\quad=2.70 \mathrm{kN} / \mathrm{m} 2$
BLOCKWORK PARTITION:

100 mm Blockwork	$=1.00 \mathrm{kN} / \mathrm{m} 2$
2 No. Plaster Faces	$=0.50 \mathrm{kN} / \mathrm{m} 2$
	$=1.50 \mathrm{kN} / \mathrm{m} 2$

TILE HANGING TO TIMBER FRAME:

Concrete Tiles
$=0.55 \mathrm{kN} / \mathrm{m} 2$
Battens \& Felt
$=0.10 \mathrm{kN} / \mathrm{m} 2$
Timber Studs $\quad=0.10 \mathrm{kN} / \mathrm{m} 2$
Plasterboard $\quad=0.15 \mathrm{kN} / \mathrm{m} 2$
Insulation $\quad=0.05 \mathrm{kN} / \mathrm{m} 2$
Plaster $\quad=0.25 \mathrm{kN} / \mathrm{m} 2$
Total Load $\quad=1.20 \mathrm{kN} / \mathrm{m} 2$

TIMBER STUD PARTITION:
2 No. Plasterboard
Faces $=0.30 \mathrm{kN} / \mathrm{m} 2$
Timber Studs $\quad=0.10 \mathrm{kN} / \mathrm{m} 2$
2 No. Plaster Faces $\quad=0.30 \mathrm{kN} / \mathrm{m} 2$
Insulation
$=0.05 \mathrm{kN} / \mathrm{m} 2$
Total Load $\quad=0.75 \mathrm{kN} / \mathrm{m} 2$

PITCHED ROOF:

Concrete Tiles	$=0.60 \mathrm{kN} / \mathrm{m} 2$
Battens \& Felt	$=0.10 \mathrm{kN} / \mathrm{m} 2$
Rafters	$=0.15 \mathrm{kN} / \mathrm{m} 2$
Total Dead Load	$=0.85 \mathrm{kN} / \mathrm{m} 2$
Imposed Load	$=0.75 \mathrm{kN} / \mathrm{m} 2$
Total Load	$=1.60 \mathrm{kN} / \mathrm{m} 2$

ROOF SPACE:

Joists \& Insulation	$=0.15 \mathrm{kN} / \mathrm{m} 2$
Ceiling	$=0.15 \mathrm{kN} / \mathrm{m} 2$
Total Dead Load	$=0.30 \mathrm{kN} / \mathrm{m} 2$
Imposed Load	$=0.25 \mathrm{kN} / \mathrm{m} 2$
Total Load	$=0.55 \mathrm{kN} / \mathrm{m} 2$

SLOPING CEILING:

Plasterboard	$=0.15 \mathrm{kN} / \mathrm{m} 2$
Insulation	$=0.10 \mathrm{kN} / \mathrm{m} 2$
Total Dead Load	$=0.25 \mathrm{kN} / \mathrm{m} 2$
Total Load	$=0.45 \mathrm{kN} / \mathrm{m} 2$

FLAT ROOF:

Chipping \& Felt	$=0.35 \mathrm{kN} / \mathrm{m} 2$
Boards, Joists	$=0.30 \mathrm{kN} / \mathrm{m} 2$
\& Firings	
Ceiling \&	$=0.15 \mathrm{kN} / \mathrm{m} 2$
Insulation	$=0.80 \mathrm{kN} / \mathrm{m} 2$
Total Dead Load	$=0.75 \mathrm{kN} / \mathrm{m} 2$
Imposed Load	$=1.55 \mathrm{kN} / \mathrm{m} 2$

TIMBER ROOF:

Boards \& Joists	$=0.35 \mathrm{kN} / \mathrm{m} 2$
Ceiling	$=0.15 \mathrm{kN} / \mathrm{m} 2$
Total Dead Load	$=0.50 \mathrm{kN} / \mathrm{m} 2$
Imposed Load	$=1.50 \mathrm{kN} / \mathrm{m} 2$
Total Load	$=\mathbf{2 . 0 0 k N} / \mathrm{m} 2$

EXTERNAL RENDER WALL:

Render
2 No. Skins $\quad=0.30 \mathrm{kN} / \mathrm{m} 2$
100mm Blockwork $\quad=2.00 \mathrm{kN} / \mathrm{m} 2$
Insulation $\quad=0.05 \mathrm{kN} / \mathrm{m} 2$
Plaster
$=0.25 \mathrm{kN} / \mathrm{m} 2$
Total Load $\quad=2.60 \mathrm{kN} / \mathrm{m} 2$

KCR Design

6 Chada Avenue Gillingham Kent ME7 4BN

KCR Deisgn | www.kcrdesign.co.uk | Phone: 01634757355 | email: keith.rogers@kcrdesign.co.uk

Site: Removed to protect client confidentiality
Job:
MEASUREMENTS TO BE TAKEN ON SITE BEFORE ORDERING MATERIALS
SuperBeam 4.57f 452185

Beam: Beam A					Span: 2.8 m.	
Load name	Loading w1	Start x1	Loading w2	End x 2	R1comp	R2comp
U T o.w.	0.25	0		L	0.35	0.35
U T BRICKWORK PARTITION	2.70*2.40	0		L	9.07	9.07
U T BRICKWORK PARTITION	2.70*2.40	0		L	9.07	9.07
U T TIMBER FLOOR	2.00*1.2	0		L	3.36	3.36
					21.85	21.85
					Total load: 43.71 kN	
Load types: U:UDL T: Total (positions in m. from R1)						

Made by KR

Page 1
File copy
Printed 9 Jan 2018 13:52

Maximum B.M. $=15.3 \mathrm{kNm}$ at 1.40 m . from R1
Maximum S.F. $=21.9 \mathrm{kN}$ at R1
Total deflection $=12.5 \times 10^{8} / \mathrm{El}$ at 1.40 m . from R1 $\left(E\right.$ in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Steel calculation to BS449 Part 2 using S275 (Grade 43) steel SECTION SIZE : $203 \times 102 \times 23$ UB Grade 43
$\mathrm{D}=203.2 \mathrm{~mm} \quad \mathrm{~B}=101.8 \mathrm{~mm} \quad \mathrm{t}=5.4 \mathrm{~mm} \quad \mathrm{~T}=9.3 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=2,110 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=2.36 \mathrm{~cm} \quad \mathrm{Z}_{\mathrm{x}}=207 \mathrm{~cm}^{3}$
$L_{E} / r_{y}=2.80 \times 100 / 2.36=119 \quad D / T=21.8$
Permissible bending stress, $\mathrm{p}_{\mathrm{bc}}=118.1 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3a)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=15.30 \times 1000 / 207.0=73.9 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Maximum shear in web, $\mathrm{f}_{\mathrm{s}}=21.85 \times 1000 /(5.4 \times 203.2)=19.9 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Check unstiffened web capacity with load of 21.85 kN
Bearing: $\mathrm{p}_{\mathrm{h}}=210 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); $\quad \mathrm{C} 1=33.2 \mathrm{kN} ; \quad \mathrm{C} 2=1.13 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{r}=140 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17a); $\mathrm{C} 1=76.6 \mathrm{kN} ; \quad \mathrm{C} 2=0.754 \mathrm{kN} / \mathrm{mm}$
Unstiffened web bearing capacity, $\mathrm{P}_{\mathrm{w}}=33.2 \mathrm{kN}$: no minimum stiff bearing length required
Total deflection $=12.5 \times 1 \mathrm{e} 8 /(205,000 \times 2,110)=2.9 \mathrm{~mm}(\mathrm{~L} / 970) \mathrm{OK}$
Combined bending and shear check (14.c): $\left(f_{b c} / p_{b c}\right)^{2}+\left(f_{s} / p_{s}\right)^{2}=0.391$ at 1.40 m . (<=1.25 OK)
Bearing details (bearing plate sizing to BS5950-1:2000)
$203 \times 102 \times 23$ UB stiff bearing length, $b_{1}=t+1.6 r+2 T=36.2 \mathrm{~mm}$
Factor reactions by 1.55 (user selected value)
Local design strength of masonry (factored) $=0.700 \mathrm{~N} / \mathrm{mm}^{2}$ (User-entered value)
R1: $\mathbf{2 5 0 \times 2 0 0 ~ \mathbf { m m }}$ bearing plate
Factored reaction $=21.85 \times 1.55=33.87 \mathrm{kN}$
10 mm m.s. bearing plate, size $250 \times 200 \mathrm{~mm}$
Bearing plate projection beyond stiff bearing length $=(250-36.2) / 2=106.9 \mathrm{~mm}$
Factored stress under plate $=1.55 \times 21.85 \times 1000 / 250 \times 200=0.68 \mathrm{~N} / \mathrm{mm}^{2}$
Required plate thickness $=\sqrt{ }(3 \times 0.68 \times 107 \times 107 / 275)=9.19 \mathrm{~mm}$: use 10 mm
Factored bending stress in plate $=0.68 \times 107 \times(107 / 2) /(10 \times 10 / 6)=232.3 \mathrm{~N} / \mathrm{mm}^{2}\left(p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}\right)$
R2 as R1
Fnc.ase heam to nrovide half-hour fire resistance as per specification Use 2No. beams, one for each skin

KCR Design

6 Chada Avenue Gillingham Kent ME7 4BN

KCR Deisgn | www.kcrdesign.co.uk | Phone: 01634757355 | email: keith.rogers@kcrdesign.co.uk

Site: Removed to protect client confidentiality Job: MEASUREMENTS TO BE TAKEN ON SITE BEFORE ORDERING MATERIALS					Made by KR Page 2 File copy	
SuperBeam 4.57f 452185			Noname.SBW		Printed 9 Jan 2018 13:52	
Beam: Beam B					Span: 2.3 m.	
Load name	Loading w1	Start x1	Loading w2	End $\times 2$	R1comp	R2comp
U T o.w.	0.2	0		L	0.23	0.23
U T PITCHED ROOF	1.60*2.00	0		L	3.68	3.68
U T PITCHED ROOF	1.60*2.00	0		L	3.68	3.68
					7.59	7.59
					Total load:	18 kN

Load types: U:UDL T: Total (positions in m. from R1)
Maximum B.M. $=4.36 \mathrm{kNm}$ at 1.15 m . from R1
Maximum S.F. $=7.59 \mathrm{kN}$ at R1
Total deflection $=2.40 \times 10^{8 / E l}$ at 1.15 m. from R1 $\left(E\right.$ in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Timber beam calculation to BS5268 Part 2: 2002 using C16 timber Use $50 \times 225 \mathrm{C} 16+8 \times 200$ flitch plate $16.7 \mathrm{~kg} / \mathrm{m}$ approx
$z=421.9 \mathrm{~cm}^{3} \quad \mathrm{I}=4,746 \mathrm{~cm}^{4} \quad$ Flitch plate $\mathrm{z}=53.3 \mathrm{~cm}^{3} \quad \mathrm{I}=533 \mathrm{~cm}^{4}$
Timber grade: C16 Single member: No load sharing
K_{3} (loading duration factor) $=1.00 \quad \mathrm{~K}_{7}$ (depth factor) $=1.032 \quad \mathrm{~K}_{8}$ (load sharing factor) $=1.0$
Loading will be carried by the timber members and flitch plate in proportion to their El values. Checks are made using the mean and minimum E-values for timber to produce worst case stresses on timber and steel members respectively. See TRADA guidance document GD9, 2008, for more information.
$E I_{\text {steel }}=205,000 \times 533 \times 10^{4}=1,093 \times 10^{9} \mathrm{Nmm}^{2}$
Calculate $\mathrm{K}_{8 \mathrm{~A}}$ (modified K8 as per TRADA GD9)
Using $E_{\text {mean }}$ El $_{\text {timber }}=8,800 \times 4,746 \times 10^{4}=418 \times 10^{9} \mathrm{Nmm}^{2}$
Timber carries $418 /(418+1093)=0.276$ of total load (in worst case)
$\mathrm{K}_{8 \mathrm{~A}}=1.04\left(\mathrm{El}_{\text {steel }}>=0.2 \mathrm{El}_{\text {total }}\right.$ and $\left.\mathrm{El}_{\text {steel }}<=0.8 \mathrm{EI}_{\text {total }}\right)$
Calculate effect of bolt holes
M16 bolts, centres offset 0 mm from beam centre line: assume 17 mm holes
To allow for holes factor bending stresses by 1.0 (timber) and 1.0 (steel)

Bending

Permissible bending stress, $\sigma_{m, a d m}=\sigma_{m, g} \cdot K_{3} \cdot K_{7} \cdot K_{8 A}=5.3 \times 1.00 \times 1.032 \times 1.04=5.69 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bending stress, $\sigma_{\mathrm{m}, \mathrm{a}}=0.276 \times 4.36 \times 1.000 \times 1000 / 421.9=2.86 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Shear

Permissible shear stress, $\tau_{\text {adm }}=0.67 \times 1.04=0.70 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress, $\tau_{\mathrm{a}}=0.276 \times 7.590 \times 1000 \times 3 /(2 \times 50 \times 225)=0.28 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Bearings

Grade compression stress perpendicular to grain $=2.20 \times 1.00=2.20 \mathrm{~N} / \mathrm{mm}^{2}$
Minimum bearing lengths:
R1: $7.59 \times 1000 /(2.20 \times 50)=69 \mathrm{~mm}$
(subject to adequate support under bearing)
R2: $7.59 \times 1000 /(2.20 \times 1.00 \times 50)=69 \mathrm{~mm}$

Deflection:

Using $\mathrm{E}_{\text {min }} \times \mathrm{K}_{9}$ (2 members) Timber EI $=5,800 \times 1.14 \times 4,746 \times 10^{4}=314 \times 10^{9} \mathrm{Nmm}^{2}$
Timber carries $314 /(314+1,093)=0.223$ of total load (average case)
Bending deflection $=0.223 \times 2.40 \times 10^{8} /(6,611 \times 4,746)=1.71 \mathrm{~mm}$
Mid-span shear deflection $=0.223 \times 1.2 \times 4.36 \times 10^{6} /(\mathrm{E} / 16) \times 50 \times 225=0.25 \mathrm{~mm}$
Total deflection $=1.71+0.25=1.96 \mathrm{~mm}(0.0009 \mathrm{~L})$ OK

Mid-span creep deflection:

Note that this calculation simplifies the Annex K calculation by taking all live loads as the leading live load rather than just the primary one if more than one
Service class 1 (dry) assumed: $\mathrm{k}_{\text {def }}=0.6 \quad \psi_{2}=0.3$ (domestic) Defl $_{\text {dead }}=0.60$ Defl $_{\text {live }}=1.80$

KCR Design

6 Chada Avenue Gillingham Kent ME7 4BN

KCR Deisgn | www.kcrdesign.co.uk | Phone: 01634757355 | email: keith.rogers@kcrdesign.co.uk

Site: Removed to protect client confidentiality
Job:
MEASUREMENTS TO BE TAKEN ON SITE BEFORE ORDERING MATERIALS
Noname.SBW
SuperBeam 4.57f 452185

Page 3
File copy
Printed 9 Jan 2018 13:52

Loads are assumed to be 25.0\% dead; 75.0% live
$\mathrm{E}_{\text {fin }}=\mathrm{E}_{\text {inst }} \times\left(\right.$ Defl $_{\text {dead }}+$ Defl $\left._{\text {live }}\right) /\left(\right.$ Defl $\left._{\text {dead }}\left(1+\mathrm{k}_{\text {def }}\right)+\operatorname{Defl}_{\text {live }}\left(1+\psi_{2} \cdot \mathrm{k}_{\text {def }}\right)\right)=\mathrm{E}_{\text {inst }} \times 0.778$
$\mathrm{E}_{\text {min,fin }}=5,800 \times 1.14 \times 0.778=5,146 \mathrm{~N} / \mathrm{mm}^{2}$
Timber $E_{\text {min,fin }} I=5,146 \times 4,746 \times 10^{4}=244 \times 10^{9} \mathrm{Nmm}^{2}$
Long term/instantaneous deflection $=(314+1,093) /(244+1,093)=1.05$
Final deflection $=1.96 \times 1.05=2.06 \mathrm{~mm}(0.0008 \mathrm{~L}) \mathrm{OK}$

Check flitch plate:

Using $\mathrm{E}_{\min \text { fin }}$ for timber, flitch plate carries $1,093 /(244+1,093)=0.817$ of total load
Per TRADA GD9 factor load by 1.10 to allow for slip and shear deflection in plate
Flitch plate $\mathrm{f}_{\mathrm{bc}}=0.817 \times 4.36 \times 1.10 \times 1.000 \times 1000 / 53.3=73.6 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Bolting:

Use M16 4.6 bolts. Bolt numbers are calculated assuming worst case load on flitch plate Load capacity per bolt in double shear $=3.69 \mathrm{kN}$ (BS5268 eq. G.7-limiting value)
(G.7: 3.69kN; G.8: 32.0kN; G.9: 7.40kN; G.10: 10.2 kN)
$F_{d}=1350 ; M_{y, d}=196,608 \mathrm{Nmm} ; \mathrm{p}_{\mathrm{k}}=310 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{K}_{90}=1.59 ; \mathrm{f}_{\mathrm{h}, \mathrm{d}, \mathrm{d}}=9.895 ; \mathrm{f}_{\mathrm{h}, 1, \mathrm{~d}}=6.223 ; \mathrm{B}$ and K_{a} taken as 1.0
Bearings: R1 (7.59kN): Required number of bolts $=0.799 \times 7.59 / 3.69=1.64$ i.e. 2 bolts min.
R2 (7.59 kN): Required number of bolts $=0.799 \times 7.59 / 3.69=1.64$ i.e. 2 bolts min.
For load transference a minimum of 4 bolts are also required across the span

